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Abstract 

This paper is concerned with the identification of the geometrical structure of the boundary 
shape for a two-dimensional boundary value problem. The output least square identifica- 
tion method is considered for estimating partially unknown boundary shapes. A numerical 
parameter estimation technique using the spline collocation method is proposed. 

lThis research was supported by the National Aeronautics and Space Administration under NASA Con- 
tract No. NAS1-18605 while the author was in residence at the Insitute for Computer Applications in Science 
and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665. 
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INTRODUCTION 

In the last decade, there has been much practical interest in domain identification for 

distributed parameter systems. Its application includes the optimal shape design ( See 

Pironneau [15] and the references therein ), free boundary problems arising in an oil reser- 

voir [9], non-destructive evaluations in thermal testing of materials [3], etc. In most iden- 

tification techniques, unknown domains to be identified are found by the minimization of 

output least square error functions ( OLSI - method ). Within the theoretical framework 

of optimal control, the existence of the optimal solution of the OLSI has been studied by 

Chanais [8] and Murat & Simon [14] for elliptic boundary value problems with Neumann 

and Dirichlet boundary conditions. In practical application of the domain identification, 

difficulties arise with physical domains that are often composed of non-smooth geometrical 

parts;hence the study of sensitivity analysis is of great importance ( e.g. [10][16][18], etc ). 

Associated with those analyses, many numerical investigations of domain identifications 

have been acomplished based on finite element methods ( See [4][12], etc ). However, 

the computation of the derivative of the cost function with respect to the unknown do- 

main tends to  be expensive and time-consuming. Such computations require intricate grid 

modification techniques for finite elements related to the decomposition of the unknown 

domain. The boundary integral equation method ( BIE ) has an advantage over the defect 

mentioned above. It does not require any decomposition of the unknown domain, only of 

its boundary. Hence the application of BIE to the domain estimation allows more sophis- 

ticated yet simpler algorithms, especially, in the case where only boundary measurement 

data are available to us. 

Our goal in domain shape identification is to develop a feasible computational method 

using the BIE method. Some previous efforts are described in [19][20] and one application 

to a wing optimization problem was illustrated in Pironneau’s book [15], Ch. 8.5. In this 

paper, we propose a computational method based on spline functions which approximate 
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Figure 1. The Spatial Domain G and the Boundary I' 

the unknown boundary curve. 

To explain our approach, we restrict our attention to a 2 - D elliptic system. Let G 

( c R(2)  ) be the open domain bounded by I'. As depicted in Fig. 1, the boundary is 

decomposed into two parts, i.e., 

r = rl u r2. 

The system behavior on G is governed by the following Laplace equation, 

A u = O  o n G  

with the mixed boundary condition 

C3U 

dn 
- _  - 91 on r1 

u = g2 on r2. 

We consider the two types of domain identification problems, 
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Case-1: Identification of Dirichlet Boundary 

Case-2: Identification of Neumann Boundary. 

The problem considered in Case-1 is to estimate the geometrical shape of the Dirichlet 

boundary r2 from the boundary observed data on rl, i.e., 

In Case-2, we deal with the identification on the Neumann boundary r2 using the boundary 

measurement on I'2, i.e., 

The problem treated here involves some applications to the impedance computed tomog- 

raphy, the identification of free boundary problems, the structure design of fluid flow, 

etc. 

EXISTENCE OF SOLUTIONS 

Let 8 be a constant parametrization vector among values in a given compact set 0 C 

R("). Throughout this paper, the parameter 8 charactrizes the unknown boundary to be 

identified. We define open sets GB whose boundaries are given by 

rluF2(O) in Case- 1 

or 

r1(8) u r 2  in Case- 2. 

From the practical point of view, actual observed data are taken from a finite number of 

sensors allocated on the boundary. Hence we represent the corresponding output of the 

system model as follows: 
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(Case-I) 

(Case-2) 

dU 
dn ~2 = - lr3 

where 7ri denotes the trace operator on I'i 

notation, we rewrite (4) and ( 5 )  by 

and C i  are subsets of I'i. For economy of 

for the Case - 1 
for the Case - 2, 

respectively. The output least square error functions for both cases are then given by 

(i = 1,2) 
1 

Ji(4) = 2 ] Y i p )  - YdI2 

where {yd} denotes the corresponding actual data. 

The OLSI-method is stated as follows: 

(IDP) Find the optimal parameter e* which is the solution of 

.&(e*) = minJi(e) (i = 1,2). 
e E e  

In the sequel, we first state the existence condition of the problem for the Case-1. 

Theorem 1 ( Identification of Dirichlet boundary ) Suppose that 

(7) 

(H-1) The open sets Ge depend continuously on 8 E 0 in the following sense: 

if 9 + e*, then the Hausdorf distance 6(Ce,g) _+ 0 . 
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(H-2) There exists a bounded open set C and D such that 

C C G ~ C D  

for any 8 E 0. 

(H-3) The sets Go have the c -cone proprty. 

(H-4) The external input g1 belongs to Hi(I'1). 

(H-5) The weight functions of the measurement operator HI satisfy 

h', E L"(C',) (i = 1,2, ., m). 

Then there exists at least one solution. 

The above results can be easily obtained from Lions' lecture notes [ll] and Pironneau's 

book [15]. 

Remark 1 The c - cone property in (H-3) means that, for Vx E I ' z (8)  , there exists a 

direction ~ ( z )  such that, for Vz E B ( x , E )  U Go, 

where C ( E ,  17, z )  denotes the half-cone of angle E, direction V ,  and vertex x intersected with 

the ball B ( x , c )  of center x and radius E .  This property is equivalent to  the corresponding 

boundary curve being Lipshitz continuous. ( See Chanais [8] ). 

For the identification in Case-2, we obtain similar results. 

Theorem 2 ( Identification of Neumann boundary ) We suppose the hypotheses (H-1) 

and (H-2) in Theorem 1 and assume that 

(H-3) The sets GB have C2 -regularity property. 

(H-a) I g2 E Hqr2) 
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(H-5)' hi EL"(C',) ( i = 1 , 2 , - - - , m )  

Then there ezists at least one solution. 

The proof of Theorem 2 can be obtained by extending the results of Chanais [8]. For the 

precise definition of C" - regularity property, we refer to Adams [l]. 

INTEGRAL EQUATION MODEL AND ITS NUMERICAL SCHEMES 

In this section, we replace the elliptic boundary value problem given in Section 1 by an 

equivalent integral equation on the boundary curve. A numerical method is given based 

on the spline collocation method. 

Boundarv Integral Eauation Model 

The Green's representation formula yields the relation (See e. g. [6 ] )  

where 
for xo E G 
for xo E I' (smooth boundary) . 
otherwise 

c ( z 0 )  = { 
In the sequel, we consider the case where the boundary curve I' is represented by a para- 

metric representation, 

Moreover, the decomposition of the boundary I' into the Dirichlet and Neumann boundary 

is assumed to be given by 

I'l = {t(t)  I t E [o,fI) 
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Thus, the boundary state and its flux on the boundary can be rewritten by using the arc 

length t along the curve I?. Let us define 

Then the elliptic boundary value problem can be reduced to the Fredholm integral equation 

for q5 and &, 

where 

and 

respectively. 

Numerical Scheme bv Sdine Collocation Method 

Many numerical methods have been proposed for the solution of integral equations, the 

most commonly used of these being Galerkin, product integration and collocation methods 

( See e. g., [2] ). Although an asymptotic error analysis is well established for the Galerkin 
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method, its numerical implementation becomes complicated since element matrices of dis- 

cretized equations are computed through a time-consuming double integration. Owing to 

the simple numerical treatment, the collocation method for solving integral equations has 

been studied by many authors. In this paper, we use the spline collocation method for 

which the asymptotic convergence analysis is available ( See [ 171 ). In the sequel, we briefly 

mention this method for the models (9) and (10). 

We select an increasing sequence of mesh points 

such that 

In addition, we introduce the nodal points 

tr - 

t .  - - 

with j = 1 , 2 , - - . , N  

with j = N + 1, - - , N + M. M I-f 
f 2M 

By S k ( A N )  ( resp. S k ( A M )  ) we denote the space of all (IC - 1) -times continuously 

differentiable splines of degree k subordinate to the partitions A N  ( resp. AM ), if k 2 1. 

By &,(AN) ( resp. S0(AM) ) we denote the corresponding step functions. We approximate 

the solutions of (9) and (10) as 

4(s) M 4:(s) E S k ( A N )  for 0 < s < f 

&(s) M 4EA(s) E S k ( A M )  for 'f < s < 1 

Then the spline collocation method is to find 

so as to satisfy the collocation equations, 
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COMPUTATIONAL METHOD FOR DOMAIN IDENTIFICATION 

In this section, using the integral equation approach as stated in the previous section, we 

consider the finite approximation for the problem ( IDP ). 

Discretized ODtimization Problem 

Let r](t, 0) and ~ ( t ,  0) be smooth curves which specify the unknown Dirichlet and Neumann 

boundaries, i. e., 

(Case-1) 

(Case-2) 
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We rewrite the system models (9) and (10) as 

(i = 1,2) 

where 

(Case-I) 

(Case-2) 

I -  f2(e) = [ - ~ 2 ( 4 ) ~ 1 +  ~ 2 ( 0 ) g 2  

-L4(e)gl + (K4 - TI)g2 

Without loss of generality, we may set observation regions as 

ci = { €( t )  I t E l t i  - .;,ti + ai[C [ o , t ] }  

(16) for i = 1 , 2 , - - - , m ,  

where a: and ui are given constants. Then observation model (6) is replaced by 

where 

for k = 1 , 2  i = 1 , 2 , . - - , m .  

In the above equation, h',(c(t)) denote the weighting functions of measurement opera- 

tor Hk in Theorem-1 or Theorem-&. For the state approximation, we choose the set 

of B-splines ( See [5] ) as basis elements in H'(0,l) where r is a positive integer. Let 
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The collocation equations for (15) yield the set of linear systems for the unknown coefficient 

vector, 

where AN," and fyM denote the corresponding element matrix and vector for the Case- 

1 and Case-2. Associated with the observation operator Ui, the matrices XFM can be 

constructed as 

Using this notation, the numerical data for the parameter 0 can be obtained by computing 

Y, ""(e) = ",MWNJ4 

for i = 1,2. 

Thus we describe the computational method for the problem (IDP): 

(IDP)"I~ Given the data {yd}, find the solution 0; E 0 which minimizes 

subject to (17). 

In the sequel, we discuss the computor implementation for solving the problem (IDP)"tN. 
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Admissible Class of Parameters 

Solving the optimization problem (IDP)MiN, we need to specify the unknown boundary 

curve so as to satisfy the hypotheses as stated in Theorems-1 and -2. To this end, we 

approximate the unknown boundary curve by cubic B-spline functions {B;,3( t )} .  In the 

sequel, we consider one simple curve as follows: 

(Case-I) 

r l ( G  6) = (rll(t), rlzM(t, 0)) 

I for O < t < Z  

where 

N+1 N 
I 52(t,O) = Ci=-lPi ( W $ ( t )  

In the above equations, the Fourier coefficients { a ~ ( O ) } ~ ? :  and {P?(O)}iN=f_', are obtained 

through the following linear systems: 

where A1 and El are given by 

12 



The matrix A2 and vector d2 can be described in the same way. The number of dimensions 

in 8 are thus set as 

M + 1 
N +  1 for the Case-2 ' 

for the Case - 1 dirn(l9) = n = 

We note that the unknown boundaries constructed by these curves satisfy the hypotheses 

(H-1) and (H-3) in Theorem-I, and (H-1) and (H-3)' in Theorem-2. Furthermore, in order 

to assure the hypothesis (H-2) in both theorems, we impose the following constraints: 

where the lower and upper bounds are given constant vectors. The precise form of the 

unknown boundary will be shown in the numerical experiments. 

Optimization Algorithm 

Under the admissible parameter class stated above, we can easily evaluate the gradient of 

the cost functional (18) with respect to (i=1,2). Hence many optimization techniques are 

readily applicable to our problem. Our approach for this optimization problem is to use the 

trust region method. The trust region scheme is briefly stated as follows: Let { x k } k = 1 , 2 ,  ... 

be a sequence generated by this algorithm. At the current point xk, we build a model of the 

cost functional ( We usually choose a quadratic model ). Then we define a region around 

xk where we believe this model to be an adequate approximation of the functional. Using 

this model, we seek a feasible direction so as to guarantee a sufficient decrease in the model 

of cost. Once we obtain the feasible direction, the exact cost functional is evaluated at  the 

new point. If its value has decreased enough, this new point is acceptable and updated as 

the next iterate. The trust region is then expanded. Otherwise the new point is rejected 

and the current trust region is reduced. The effectiveness of this algorithm is its global 
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convergence propertiespamely, this algorithm makes it possible to ensure convergence to 

a critical point (optimal solution), even from starting points ( initial guesses ) that are far 

away from the optimal solution. For detailed discussions, we refer to [13] etc. 

NUMERICAL EXPERIMENTS 

In this section, we tested our method for two examples. Although these are quite sim- 

ple, problems treated here can be easily extended to the more interesting topics, such as 

the identification of free boundary and optimal shape design problems. For the imple- 

mentation of the trust region algorithm, we used a Fortran software package created by 

Dr. R. G. Carter, ICASE ( See [7] for more details ). Test computations were carried out 

on the Gould NP1 at the NASA LangIey Research Center. 

Example-1 : Identification of Dirichlet Boundary 

The boundary I? was decomposed into I?l and r2 by T = 0.75. The boundary inputs were 

set as 
for t E [0.25,0.5] 

for t E [O.,  0.5) U (0.5,0.75] 
7 s 1 ( t ( t ) )  = 

g2(r](t))  = 0 for t E (0.75,l). 

The number of knot sequence in Example-1 was set as N = 24 and M = 8. To discretize 

the system model by the spline collocation method, we use parabolic B-splines ( i. e. r = 2 ). 

The number of sensors was taken as m = 24. The initial guesses for the parameters were 

given by 
for i = 2 , . - - , 8  
for i = 1,9 

= 

Table 1 shows the estimated parameter values using the artificially generated data. Figure 2 

represents the estimated parameter function qF(t, 0) and true boundary shape. 
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Ezample-2 : Identification of Neumann Boundary 

In this example, the boundary r was devided by 3 = 0.25. The boundary inputs were 

preassigned as 

g I ( s ( t ) )  = 0 for t E (0.,0.25), 

for t E [0.5,0.75] 

for t E [0.25,0.5) U (0.75,l.l {: gz(E( t ) )  = 

The number of knot sequence in Example-2 was set as N = 8 and M = 24. We also use 

parabolic B-spline functions for the discretized system model (17). The number of sensors 

and the initial guesses for the parameters were taken the same as in Example - I .  Table 2 

shows the estimated parameter values and Figure 3 represents the estimated parameter 

curve ("(t, 0) and true boundary shape. 
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Initial 
Guess 
0.0000 
1.0000 
1.0000 
1 .oooo 
1.0000 
1.0000 
1.0000 
1.0000 
0.0000 
1.1796 
x 10-3 

Iteration Iteration Iteration 
10 20 90 

0.2260 
1.1571 
1.1756 
1.2833 
1.3051 
1.2857 
1.1755 
1.1565 

-0.2261 

0.2598 
1.0794 
1.1982 
1.2947 
1.3569 
1.2978 
1.1981 
1.0786 

-0.2599 

0.4982 
1.0800 
1.2000 
1.3002 
1.3499 
1.2999 
1.2000 
1.0800 

-0.5021 
1.7248 5.3033 4.1711 
x10-6 x10-" x10-l6 

Table 1. Estimated Values in Ezarnple-I. 
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Figure 2. True Curve and Estimated Boundary in Ezample-I. 
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Initial 
Guess 
0.0000 
1 .oooo 
1.0000 
1 .oooo 
1 .oooo 
1.0000 
1 .oooo 
1.0000 
0.0000 
1.8867 
x 10-3 

Iteration Iteration Iteration 
10 40 70 

-0.6170 -0.5162 -0.5000 
0.9264 0.9198 0.9200 
0.8876 0.7953 0.8000 
0.8860 0.7332 0.7000 
1.0128 0.8162 0.6500 
0.8860 0.7347 0.7000 
0.8876 0.7962 0.8000 
0.9264 0.9199 0.9200 
0.6170 0.5155 0.5000 
2.3881 5.5471 1.3553 
x 10-5 x 10-8 x 10-18 

Table 2. Estimated Values in Ezample-2. 
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Figure 3. True Curve and Estimated Boundary in Ezample-2. 
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